Highlights of Fundamentals of Microelectronics

Jaeho Lee

March 17, 2022

1 Introduction to Microelectronics

Voltage Gain		
<i>Voltage gain</i> A_v in a voltage a	amplifier:	
	$A_v = $.	(1)
Expressed in decibels (dB):		
	$A_{\nu} _{\mathrm{dB}} = $.	(2)
Kirchoff's Laws		
The Kirchoff Current Law (K0	CL).	
The Kirchoff Voltage Law (KV	Т.).	
Thevenin and Norton Equiva	lents	
Thevenin's theorem. A linear calculated by determined by	one-port network can be replaced with . The equivalent voltage v_{Thev} can ; The equivalent impedance Z_{Thev} can	n be n be
Norton's theorem. A linear of tained by ; T by	ne-port network can be replaced with . The <i>equivalent current</i> i _{Nor} can be 'he <i>equivalent impedance</i> Z _{Nor} can be determine	ob- ined

2 Basic Physics of Semiconductors

 Bandgap Energy

 The bandgap energy E_g is

 . This is a fundamental property of the material, e.g., for silicon

 $E_g =$. (1 eV = 1.6×10^{-19} J)

 Electron Density (Charge Carrier Density)

 The density of electrons n_i , i.e., the number of electrons per unit volumn is

 $n_i =$. (5)

where $k = 1.39 \times 10^{-23}$ J/K is the Boltzmann constant.