TEX으로 작성하는 수식 미세 조정

남수진

KAKAO
sjnam@ktug.kr

2013년 2월 18일
Q&A Session with Prof. Donald Knuth, TUG’95 Annual Meeting

$x^n + y^n = z^n \quad \ldots \quad \text{NOT!}$

The paper came out in the Annals of Mathematics last month; it arrived in our library and I saw it sitting there, and I looked at it and it was just wonderful for me because it was in \TeX and it looked gorgeous! This to me was the \ldots you know, it was so \ldots I mean, I almost felt like I had helped to solve the Theorem myself!
And once you have gotten to that level, there’s only a little bit more to learn before you are producing formulas as beautiful as any the world has ever seen; **tastefully applied touches of \LaTeX** will add a professional polish that works wonders for the appearance and readability of the books and papers that you type.
This manual is intended for people who have never used \LaTeX before, as well as for experienced \LaTeX hackers. In other words, it's supposed to be a panacea that satisfies everybody, at the risk of satisfying nobody. Everything you need to know about \LaTeX is explained here somewhere, and so are a lot of things that most users don't care about. If you are preparing a simple manuscript, you won't need to read anything. If you are preparing a more complex effect, you will need to read this manual or use the one from the \LaTeX project.
수식에서 줄바꿈은 $=$, $<$, $
ightarrow$, $+$, $-$, \times와 같은 연산자 다음에서만.

\[f(x, y) = x^2 - y^2 = (x + y)(x - y) \]

\[f(x, y) = x^2 - y^2 = (x + y)(x - y) \]

\[\text{if } x \neq y \]

\[f(x, y) = \{x^2 - y^2\} = \{(x+y)(x-y)\} \]

$(x_1, \ldots, x_m, y_1, \ldots, y_n)$

\[(x_1, \ldots, x_m, \allowbreak y_1, \ldots, y_n) \]
This manual is intended for people who have never used \TeX before, as well as for experienced \TeX hackers. In other words, it's supposed to be a panacea that satisfies everybody, at the risk of satisfying nobody. Everything you need to know about \TeX is explained here somewhere, and so are a lot of things that most users don't care about. If such claims sound too good to be true, keep in mind that they were made by \TeX's designer, on a day when \TeX happened to be working, so the statements may be true. However, no one read on anyway.)
This manual is intended for people who have never used \TeX\ before, as well as for experienced \TeX\ hackers. In other words, it's supposed to be a panacea that satisfies everybody, at the risk of satisfying nobody.

Everything you need to know about \TeX\ is explained here somewhere, and so are a lot of things that most users don't care about. You are preparing a simple manuscript, you won't need to know a lot of \TeX\ at all; on the other hand, some complex effects you may require a lot of,"
thin space (normally 1/6 of a quad);
> medium space (normally 2/9 of a quad);
; thick space (normally 5/18 of a quad);
! negative thin space (normally \(-1/6\) of a quad).

This manual is intended for people who have never used \TeX \ before, as well as for experienced \TeX \ hackers. In other words, it's supposed to be a panacea that satisfies everybody, at the risk of satisfying nobody. Everything you need to know about \TeX \ is explained here somewhere, and so are a lot of things that most users don't care about. (If such claims sound too good to be true, keep in mind that they were made by \TeX \'s designer, on a day when \TeX \ happened to be working, so the statements may be biased; but read on anyway.)
\[\int_0^\infty f(x) \, dx \]

\[y \, dx - x \, dy \]

\[dx \, dy = r \, dr \, d\theta \]

\[x \, dy/dx \]

\[(2n)! / (n!(n+1)!) \]

\[\{1, 2, \ldots, n\} \]

\[\{ x \mid x > 5 \} \]
\[\sqrt{2} x \]

\[\sqrt{\log x} \]

\[O\left(\frac{1}{\sqrt{n}}\right) \]

\[[0, 1) \]

\[\log n (\log \log n)^2 \]

\[x^2 / 2 \]

\[n / \log n \]

\[\Gamma_2 + \Delta^2 \]

\[R_i{}^j{}_{kl} \]
\cdots (\ldots) \pm, -, \times, =, \leq, \subset 사이에서.

\ldots 사이나 기호가 없을 때.

\[x_1 + \cdots + x_n \]
\[x_1 = \cdots = x_n = 0 \]
\[A_1 \times \cdots \times A_n \]
\[f(x_1, \ldots, x_n) \]
\[x_1 x_2 \cdots x_n \]
\[(1-x)(1-x^2) \cdots (1-x^n) \]
감사합니다.

This manual is intended for people who have never used \TeX\ before, as well as for experienced \TeX\ hackers. In other words, it's supposed to be a panacea that satisfies everybody, at the risk of satisfying nobody. Everything you need to know about \TeX\ is explained here somewhere, and so are a lot of things that most users don't care about. If you are preparing a simple manuscript, you won't need to know \TeX\ at all; on the other hand, some very complex effects you might need only if you are writing a technical book are inherently explained in this manual.